Deep cognitive imaging systems enable estimation of continental-scale fire incidence from climate data
نویسندگان
چکیده
Unplanned fire is a major control on the nature of terrestrial ecosystems and causes substantial losses of life and property. Given the substantial influence of climatic conditions on fire incidence, climate change is expected to substantially change fire regimes in many parts of the world. We wished to determine whether it was possible to develop a deep neural network process for accurately estimating continental fire incidence from publicly available climate data. We show that deep recurrent Elman neural network was the best performed out of ten artificial neural networks (ANN) based cognitive imaging systems for determining the relationship between fire incidence and climate. In a decennium data experiment using this ANN we show that it is possible to develop highly accurate estimations of fire incidence from monthly climatic data surfaces. Our estimations for the continent of Australia had over 90% global accuracy and a very low level of false negatives. The technique is thus appropriate for use in estimating the spatial consequences of climate scenarios on the monthly incidence of wildfire at the landscape scale.
منابع مشابه
The influence of regional surface soil moisture anomalies on forest fires in Siberia observed from satellites
Forest fires are frequent in the Siberian taiga and are predicted to increase in frequency as a result of increased fire risk under drought conditions, and prolonged fire seasons caused by climate change. There is, however, some uncertainty as to the extent to which drought influences forest fire frequency at a regional scale. Here, we present an analysis of satellite derived soil moisture anom...
متن کاملComparison of Performance of GLM, RF and DL Models in Estimation of Reference Evapotranspiration in Zabol Synoptic Station
Evapotranspiration is one of the most important components of the hydrology cycle for planning irrigation systems and assessing the impacts of climate change hydrology and correct determination is important for many studies such as hydrological balance of water, design of irrigation irrigation networks, simulation of crop yields, design, optimization of water resources, nonlinearity, inherent u...
متن کاملتجزیه و تحلیل آتشسوزی جنگل با منشأ آبوهوایی با دادههای ماهوارهای در منطقهی البرز
Forest fire is one of the important problems in Iran which is caused by different factors such as human and natural factors. One of these factors is climate conditions that can be created by heat wave and special circulation of atmospheric phenomena. Occurrence of forest fire in north of Iran have different impacts on environment such as destruction of natural. According to the position of Iran...
متن کاملComparison of Two Quantitative Susceptibility Mapping Measurement Methods Used For Anatomical Localization of the Iron-Incorporated Deep Brain Nuclei
Introduction Quantitative susceptibility mapping (QSM) is a new contrast mechanism in magnetic resonance imaging (MRI). The images produced by the QSM enable researchers and clinicians to easily localize specific structures of the brain, such as deep brain nuclei. These nuclei are targets in many clinical applications and therefore their easy localization is a must. In this study, we aimed to i...
متن کاملWildfire responses to abrupt climate change in North America.
It is widely accepted, based on data from the last few decades and on model simulations, that anthropogenic climate change will cause increased fire activity. However, less attention has been paid to the relationship between abrupt climate changes and heightened fire activity in the paleorecord. We use 35 charcoal and pollen records to assess how fire regimes in North America changed during the...
متن کامل